Benchmarking
Feluda includes a benchmarking system that measures performance characteristics of all operators, helping developers optimize performance and maintain consistent standards.
Quick Start
Run All Benchmarks
cd benchmark
python main.py
Generates timestamped reports in benchmark/results/.
Run Specific Operator
from benchmark.operators import cluster_embeddings
from benchmark.report import BenchmarkReport
results = cluster_embeddings.benchmark()
report = BenchmarkReport()
report.extend(results)
report.save_json("results.json")
System Components
1. Profiler Engine
Measures execution time, memory usage, and CPU time:
from benchmark.profiler import Profiler
# Profile a function
@Profiler.profile
def my_function():
# Your code here
pass
# Benchmark an operator
result = Profiler.benchmark_operator(
operator_class=MyOperator,
operator_name="my_operator",
runtime_kwargs={"input": "test_data"}
)
Features:
System information capture (CPU, memory, platform)
Memory usage tracking with peak detection
Wall clock and CPU time measurement
2. Data Generator
Creates synthetic datasets for testing:
from benchmark.data_generator import DataGenerator
# Generate embeddings
embeddings = DataGenerator.generate_embeddings(1000, 512)
# Generate clustered data
embeddings, labels = DataGenerator.generate_embeddings_with_clusters(
num_clusters=5, samples_per_cluster=200, dim=512
)
# Generate test images
images = DataGenerator.generate_test_images("test_images/")
Dataset Types:
Embeddings: 100 to 100,000 samples, 256 to 2048 dimensions
Images: 128x128 to 4K resolutions, RGB/grayscale modes
Clustered Data: Known cluster structures for validation
3. Operator Benchmarks
Each operator has a dedicated benchmark:
def benchmark() -> list[dict]:
"""Benchmark the ClusterEmbeddings operator."""
results = []
# Test with different dataset sizes
for n_clusters in [3, 5, 10]:
embeddings, labels = DataGenerator.generate_embeddings_with_clusters(
num_clusters=n_clusters, samples_per_cluster=200
)
result = Profiler.benchmark_operator(
operator_class=ClusterEmbeddings,
operator_name=f"cluster_embeddings_{n_clusters}clusters",
runtime_kwargs={"input_data": embeddings}
)
result["data_description"] = f"{n_clusters} clusters, 200 samples each"
results.append(result)
return results
4. Report Generation
Creates comprehensive reports:
from benchmark.report import BenchmarkReport
report = BenchmarkReport()
report.extend(benchmark_results)
report.save_json("results.json")
report.save_markdown("results.md")
Example: Creating a New Benchmark
1. Create Benchmark File
# benchmark/operators/my_operator.py
from benchmark.data_generator import DataGenerator
from benchmark.profiler import Profiler
from feluda.operators import MyOperator
def benchmark() -> list[dict]:
"""Benchmark the MyOperator."""
results = []
# Test configurations
configs = [
{"param1": "value1", "param2": 10},
{"param1": "value2", "param2": 20}
]
for config in configs:
result = Profiler.benchmark_operator(
operator_class=MyOperator,
operator_name="my_operator",
runtime_kwargs={"input": "test_data", **config}
)
result["data_description"] = f"config: {config}"
results.append(result)
return results
2. Register the Operator
Add to benchmark/operators/__init__.py:
from . import my_operator
all_operators = [
# ... existing operators
my_operator,
]
Performance Metrics
Execution Metrics
Execution Time: Total wall clock time
CPU Time: Actual CPU processing time
Memory Change: Net memory allocation/deallocation
Peak Memory: Maximum memory usage
Quality Metrics
Success Rate: Percentage of successful runs
Error Details: Specific failure reasons
Consistency: Standard deviation of performance
Understanding Results
JSON Report Structure
{
"system_info": {
"platform": "macOS-14.6.0-x86_64",
"cpu_count": 8,
"total_memory_gb": 16.0
},
"statistics": {
"cluster_embeddings_kmeans": {
"avg_execution_time": 0.045,
"avg_memory_change": 2.45,
"success_rate": 1.0
}
}
}
Markdown Report
Provides human-readable summaries with:
System configuration details
Per-operator performance statistics
Success rates and error information
Dependencies
pip install psutil memory_profiler numpy pillow